SET-THEORETIC METHODS
PhD Advanced Methods Course, Fall 2018
2 CEU credits, 4 ETCS

September 5, 2018

Instructor

Carsten Q. Schneider
Professor
Department of Political Science
Central European University

Room: October 6 . 12, room 402/b
E-mail: schneiderc@ceu.edu
Phone: +36 1 327-3086

Classes

Fridays, 9:00-12:40, weeks 3-9
Room: TBA

Office Hours

Tuesdays and Wednesdays 15:30 - 17:10
Room: October 12 u. 6, 402/b
NB: Sign up beforehand at http://carstenqschneider.youcanbook.me.

Course description

This is an advanced methodological course on set-theoretic methods for the social sciences. While the spectrum of a set-theoretic methods is broad, including techniques such as Mill’s methods or typological theory, this course primarily focuses on the crisp-set and fuzzy-set versions of Qualitative Comparative Analysis (QCA). Invented by Charles Ragin [1987], this technique has undergone various modifications, improvements, and ramifications [Ragin, 2000, 2008]. These methods are applied in fields as diverse as political science, public policy, international relations, sociology, business and management studies, or even musicology (see www.compasss.org). This course aims at enabling students to produce a publishable QCA of their own. In order to achieve this, this course provides both the formal set theoretical underpinnings of QCA and the technical and research practical skills necessary for performing a QCA. The practical part is exclusively performed in the R software environment.

The course is structured as follows. We start with some basics of formal logic and set theory. Then we introduce the notions of sets and how they are calibrated. After this, we move on to the concepts of causal complexity and of necessity and sufficiency, show how the latter denote subset relations, and then learn how such subset relations can be analyzed with so-called truth tables. All concepts and analytic steps are first introduced based on crisp sets and then it is shown how they apply to fuzzy sets. Once students master the current standard analysis practice, we discuss several extensions and possible improvements of QCA. Depending on the
needs and interests of participants, we choose several topics from the following list: set-theoretic multi-method research, i.e. the combination of QCA with follow-up within-case analyses; the integration of time into QCA; theory-evaluation in set-theoretic methods; or forms of testing the robustness and sensitivity of results generated with QCA. The course takes place during weeks 3-9 of the Fall term and each meeting consists of a double session. The first half of each meeting will be dedicated concepts and the second half practical implementation in the R software environment.

Since this is an advanced PhD course, students who plan to attend should first check for themselves and, in case of doubt, with me whether they fulfill the following requirements: Participants should have (a) some practical experience in empirical comparative social research; (b) undergone some thorough courses in basic research methodology; and (c) preferably some basic statistical training, or at least hands-on knowledge with some sort of spreadsheet programs (even if it is just Excel). The core reading of the course is Schneider and Wagemann [2012]. Students who wish to take the course and need more information as to what the course is about are invited to read the first chapters of the book.

From the beginning, we will use specialized software for performing the analytic steps learned in class. We will use R (and RStudio) and within it, the packages QCA [Dusa, 2018] and Set-Methods [Oana and Schneider, 2018]. A desired (and very likely) side effect of this course will be that participants not only improve their R skills, but also that we engage in discussions on more general methodological issues of good comparative research, such as principles and practices of case selection, concept formation, measurement validity, and forms of causal relations.

Course Requirements

Presence, Participation, and Homework

Students are expected to be actively present at all seminars. In case you are unable to attend, you need to inform me via email prior to the meeting you are going to miss. Unexcused missed classes count with 0 points for participation on that specific day. During the seminars you are expected to reflect critically on the mandatory readings and to engage in discussions with your fellow students and myself. In general, for the grade the quality of participation prevails over its quantity, but if quantity is zero, quality is zero, too. Students who are present but do not actively participate receive the lowest passing grade for participation. Feedback on the class performance (including grade) will be provided if and when students sign up for an appointment during the office hours.

After the sessions in weeks 2-5, students will receive homework assignments. They are meant to consolidate the conceptual knowledge and foster the practical skills in performing set-theoretic analyses with the help of the relevant computer software. How much of these homework is done is at the discretion of each students, but the performance on this task influences the participation component of the overall grade for the course.

Mid-term exercise

For the mid-term paper, you receive a published article that uses QCA. You also receive the data based on which the QCA is performed in this article. Your task is to replicate its findings. You are asked to submit a clean R code, whereby clean means that the script is running without errors, has succinct but informative lines commenting the commands that follow, and that produces all the analytic results that you are using in your paper. In short, it should be a real replication file. The material for the mid-term is handed out on Friday afternoon after our third session. Deadline for submission is Thursday 9am before our fourth session.
Final paper

For the final paper, you receive a published article that uses QCA. You also receive the data based on which the QCA is performed in this article. Your task is to summarize the article, replicate its findings, and perform additional analyses. Your paper should be like a real article, with formatted text, coherent sentences, meaningful tables and figures with numbered headings, a reference list, and an appendix. The paper should be no longer than 15 pages, 12 points font size, and 1.5 line space. Please submit a WORD document, if possible. Spend no more than about one page of the paper on succinctly summarizing the main gist of the article. Say what the outcome set is, what the conditions are, and what the main findings were. Roughly 2/5 should go into the replication of the findings. Use this space to also point out difficulties you encounter in replicating, if any. The remaining roughly 3/5 should be used to perform additional analyses the article did not document. Try to incorporate as many reasonable analytical steps as you can fit in and that you have learned in the course. In addition to the paper, you are asked to submit a clean R code, whereby clean means that the script is running without errors, has succinct but informative lines commenting the commands that follow, and that produces all the analytic results that you are using in your paper. In short, it should be a real replication file.

<table>
<thead>
<tr>
<th>Table 1: Grade composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-class participation, including homework assignments</td>
</tr>
<tr>
<td>Mid-term exercise</td>
</tr>
<tr>
<td>Final paper</td>
</tr>
</tbody>
</table>

The grading follows the standard scale adopted by the Department of Political Science: A: 100-94; A-: 93-87; B+: 86-80; B: 79-73; B-: 72-66; C+: 65-59; F: 58-0

Learning outcomes and their assessments

The overall grade will primarily indicate the ability of the students to comprehend two things: (a) to understand the distinct logic of social inquiry that one is buying into when applying set-theoretic methods such as QCA and (b) to master the practical tricks of the trade when performing a QCA. The learning outcomes of the doctoral program are supported and measured by the present course in the following ways: The ability to reflect on some of the major methodological schools in the discipline; to deploy effective oral presentation and discussion skills as measured primarily by the in-class participation. The skills to employ cutting-edge methods are reflected by the mid-term paper and the final paper.

Course material

This course heavily draws on Schneider and Wagemann [2012]. Paper and electronic copies of the book are available at CEU’s (virtual) library. Data sets and R scripts plus other course material, such as the slides and extra readings will also be made available through a password protected e-learning site at http://ceulearning.ceu.edu/. Students who are officially enrolled in the course will have access to the e-learning site.

Technicalities and relevant software

Our seminar sessions will take place in a normal class room rather than in the computer lab. Students are therefore asked to bring their own laptops to class. Participants are asked to
download and install the following free software packages on their laptops prior to the beginning of the course.

1. R, https://cran.r-project.org/
2. R packages QCA, SetMethods, and their dependencies
3. RStudio, https://www.rstudio.com/

Useful books and sources of information

The international hub for set-theoretic methods is Compass (www.compasss.org). For those who are on Facebook, the group ‘Qualitative Comparative Analysis and Fuzzy Sets’ (https://www.facebook.com/groups/483487988377003/) has become a major meeting point for asking questions and sharing news.

The following books are particularly relevant for this course.

8. Adrian Dusa. *QCA with R*. Springer, 2018

Some journals publishing articles on and with QCA

European Journal of Political Research, Field Methods, Political Analysis, Political Research Quarterly, Quality and Quantity, Sociological Methods and Research, Studies in Comparative International Development, Comparative Political Studies
Course outline

Part 1 – The Basics

Session 1: Causal Complexity; Basics of Formal Logic and Set Theory; Sets and Their Calibration; Necessity and Sufficiency

The aim of this week’s session is to introduce a specific notion of causal complexity and to show how some basic notions of formal logic and set theory provide powerful tools for expressing such complexity. Before this, we discuss the difference between variables and sets and introduce the basics of set calibration. We also learn which empirical data patterns are postulated by claims about necessary and about sufficient conditions and why set-theoretic methods are better equipped than standard statistical techniques for unraveling such data pattern.

Mandatory readings:

Recommended readings:
Gary Goertz and James Mahoney. *A Tale of Two Cultures: Qualitative and Quantitative Research in the Social Sciences*. Princeton University Press, Princeton, 2012, chapter 2

Session 2: Basics of truth table analysis; Parameters of fit

In this session, we introduce the form and function of truth tables. We discuss how a data matrix can be represented with a truth table and how the information contained in this truth table is analyzed with the use of logical minimization. We also discuss the problems that arise whenever the tools of formal logic are applied to empirical data, which, almost by default, are noisy and incomplete. We start with the problem of contradictory truth table rows. When discussing how to tackle them we will introduce the ‘parameter of fit’ consistency and after that also coverage. Both parameters provide a numerical expression of how well the logical statement contained in a QCA solution term reflects the empirical evidence at hand. We also engage with the analytic pitfalls that can emerge when so-called skewed sets are part of the analysis. Along these lines, we introduce additional (rather than alternative) parameters of fit.

Mandatory readings:

Recommended readings:

Session 3: Limited diversity; The Truth Table Algorithm

The second problem arising when formal logical tools meet empirical data is that of limited diversity. We learn what it is; what it does to causal inference; and which strategies are available for mitigating its impact on the results produced. Here the notion of counterfactuals is crucial and we learn how to distinguish between more and less plausible counterfactuals. With all the tools learned so far, we are able to implement the so-called Truth Table Algorithm, the modal form of performing QCA.

Mandatory readings:

Recommended readings:

Session 4: Enhanced Standard Analysis

From this session onwards, we are addressing hitherto under-researched or even unresolved issues in set-theoretic methods. We start by issues surrounding the current best practices in handling logical remainders and learn about suggestions on how to improve these current practices.

Mandatory readings:

Recommended readings:
- Carsten Q. Schneider. Realists and Idealists in QCA. Political Analysis, online fir, 2018. doi: 10.1017/pan.2017.45

Session 5: Set-Theoretic Multi-Method Research

In this session, we learn about the principles and practices of set-theoretic multi-method research. This term has come to mean the combination of a cross-case QCA with within-case process tracing. We define different types of cases (typical, deviant, individually irrelevant), discuss how in a given data set the best available cases are identified, and which pairs of cases are best for which inferential goal of comparative within-case analysis.

Mandatory readings:
Recommended readings:

Session 6: Robustness tests; Theory evaluation

We discuss how the results generated by set-theoretic methods can and should be subjected to tests of robustness. We ask questions, such as: Robustness against which changes to the analysis? What are robust results in set-theoretic methods? Or how can results of robustness tests best be displayed? We also explore the possibilities for evaluating theoretical hunches based on empirical results generated with set-theoretic methods and how this differs from hypothesis testing in statistical approaches.

Mandatory readings:

Recommended readings:

References

